Teaching Ideas: Separation of Substances

Duration: 90 minutes

Grade: VI

1. Objective

The objective of this lesson is to enable students to develop an understanding of the various separation techniques that are used to separate the components in a mixture.

2. Learning Outcomes

After the completion of this lesson, the students will be able to do the following:

- Understand the need for separation of substances.
- Apply different methods to separate the components of a mixture.

3. Pre-requisites

Before studying this lesson, the students should know about the different properties of matter, such as solubility, weight, size, etc.

4. Elements of a Good Science Classroom

A good science classroom should have the following elements: science skills, classroom culture, and a connection to the life around the students. This year, we will be focusing on the following specific elements:

1. Science skills:

the students should understand, at their level, the following elements of the scientific method: generation of a hypothesis, experimentation, observation, analysis, and inference.

2. Classroom conducive for learning science:

Self-motivation, self-awareness, working in a team, and social/civic awareness and consciousness. The students should be allowed to interact with each other and learn from each other to improve their communication skills through peer-learning.

- Connection with life around: The students should be able to learn and apply scientific concepts in simple real-life situations.
- Removal of gaps in learning: The gaps in numeracy, literacy, and conceptual understanding of science should be addressed.

In the context of this module, the following elements of a good science classroom can be demonstrated:

Classroom	Specific Type	Context	Teacher's	Students' Actions
Element			Actions	
Classroom	Students'	Giving	Through this	The students
engagement	participation	opportunities to	activity, the	should present
		students	teacher should	their ideas to the
		(individuals/groups)	engage the	whole class.
		to share their	students and	
		findings and discuss	provide them an	
		them with the	opportunity to	
		whole class.	express their	
			understanding	
			about pure	
			substances and	
			mixtures.	
Conceptual	Activity and	Multiple-choice		The students
understanding	assessment	questions and		must deduce the
		activities		ways in which
		(application level) to		substances are
		check the		separates from a
		understanding of		given mixture.
		the students.		
				-
Science skills	Observation	Observing the	The teacher	The students
		components in a	should guide the	should be able to
		mixture.	students to	different
			different	cubstancos
			components that	procent in the
			are present in a	given mixture
			given mixture	given mixture.
Science skills	Inference	Predicting the basis	The teacher	The students
Science skins	incrence	of separation in	should guide the	should identify
		or separation in	students to	the properties
			identify the	and use suitable
		terms of size,	properties of the	separation
		weight, colour,	substances in the	techniques to
		solubility, and	mixture that can	separate
		magnetic	be used to	different
		attraction).	separate it from	substances from
			the mixture.	_

		the given
		mixture.

5. Materials required

The materials mentioned below will be required to perform the experiment. It has been assumed that the strength of the class is 30.

S.	Method of Separation	Materials Required
No		
1	Hand picking	Stones of different colour and different sizes
2	Threshing	Harvested rice paddy or sesame
3	Churning	Curd and churner
4	Winnowing	Rice with husk
5	Sedimentation/Decantation	Calcium hydroxide solution or chalk powder in
		water
6	Magnetic separation	Iron fillings mixed with sand/salt/grains, magnet
7	Sieving	Rice and flour mixed with sand or small gravels
		(low cost), sieve
8	Sedimentation/Decantation	Polluted water with various contaminants, such
		as sticks, thermocol, sand, stone gravels, paper
		clips, nails, food colour, plastics, etc.

Some important materials that are to be kept include strainers, mesh screens, coffee filter, filter paper, glass rod, funnel, cotton, spoons, beakers, magnets

6. Note to the Teacher

The concept of separation needs to be dealt as a continuation of the discussion pertaining to pure substances and mixtures.

In Activity 1, the students should observe the different mixtures. They should deduce the ways in which the substances of the mixture can be separated, and they should note down the results in the worksheet that will be provided to them. In Activity 2, the students should observe the

different components present in a mixture and apply different methods to separate the components of the mixture.

The teacher should encourage students to predict the outcomes of the activities before the students do it. The students may make predictions based on their observations and daily-life experiences. The students can be encouraged to answer orally.

7. Activity 1

7.1 Procedure:

1. Divide the students into groups of 4. Distribute the worksheets and the samples of the mixtures to each group. Provide the sample mixtures one at a time.

2. Ask the students to discuss within their groups and first identify the component that would be the easiest to separate and the method of separation that would be most suitable for separating it. The students should also discuss about the equipment that they would require for the separation. The students should also note down the property that makes possible the separation through their chosen technique in the worksheet.

3. Allow the groups to attempt the separation technique based on their group's decision. Once all the groups are done, discuss what was the best method available and what was the property that made separation through the technique possible.

4. Repeat this process for the other samples as well.

7.2. Observables

Solubility, weight, colour, and size of the substances present in the mixture are the observables for this experiment.

7. 3. Worksheet

You are given different mixtures in your respective groups.

- 1. Identify the components in each of the given mixtures.
- 2. Discuss in your group the possible ways to separate the components of the mixture.
- 3. Predict the basis of separation in each of the cases.
- 4. Consolidate your findings in Table 1 given below.

7.4. Table 1

Mixture	Components of the	Method of separation	Basis of separation
	mixture		

A bag of	Onion, tomato, brinjal,	Hand picking	Difference in size,
vegetables	potato, leaves, etc.		shape, and colour.
Stones of			
different sizes			
and colours			
Harvested rice			
paddy.			
Rice with husk			
Curd and churner			
D'an illerations			
Rice with stones			
of different			
colours (white/			
grey/brown/black			
)			
Calcium			
hydroxide			
solution or Chalk			
powder in water.			
Iron filings with			
sand/salt/grains			
Sand with small			
gravels			
Rice with flour			

7.5. Activity 3

After the recent floods, all the sources of water in the town has become polluted with various contaminants. You are given a sample of water from a nearby source. The samples are filled with mud, stones, thermocol, plastics, etc. Find out ways to obtain the cleanest sample of water that you can using the materials provided. Discuss in your groups and create a plan for doing the same. Carry out the plan and record the results.

7.6. Assessment

Worksheet

- 1. Why do we separate substances?
 - a. To know the price of the substances.
 - b. To take out the useful substances from a mixture.
 - c. To prevent them from spoiling.
- 2. Can all substances be separated using the same method? Give reasons.

- 3. Why can't we separate rice and flour using the hand-picking method?
 - a. They are very expensive.
 - b. They are too large in number.
 - c. They are too large in size.

4. The method of separation to be adopted depends on the ______ of the components.

- a. Color
- b. Shape

d. All of the above

c. Size

5. Match the following:

Handpicking	Used to separate magnetic materials from non-magnetic materials.
Winnowing	Adopted to separate lighter solids from heavier ones.
Magnetic separation	Process of pouring out the clear liquid without disturbing the sediment.
Sedimentation	For smaller quantities containing particles of different sizes.
Decantation	Process of separating insoluble solid particles (residue) from a liquid (filtrate) by using a filter paper.
Filtration	Settling down of suspended, insoluble, and heavy solid particles.

6. Match the following:

Mixture of chalk and water	Magnetic separation
Mixture of sand and water	Decantation
Mixture of iron filings, salt and sand	Filtration
Husk and paddy	Hand picking
Rice and stone	Winnowing